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The physics realization of a ququadrit quantum computation with cooled trapped 138Ba+
ions in a Paul trap is investigated. The ground state level 62S1/2(m = −1/2) and three
metastable levels: 52D3/2(m = −1/2), 52D5/2(m = −1/2), and 52D5/2(m = 1/2), of
the fine-structure of the 138Ba+ ion, are used to store the quantum information of
ququadrits. The use of coherent manipulation of populations in single ququadrit, being
a four-dimensional Hilbert space, produces a discrete Fourier transform and the manip-
ulation of the first red band transitions with the introduction of an ancillary quantum
channel between two ququadrits generates a conditional phase gate. The combination
of the both above results in a universal two-ququadrit gate, called XOR(4) gate corre-
sponding to the controlled-NOT gate operation in qubit systems. The implementation
of quantum Fourier transform for n ququadrits is performed by means of the conditional
phase-shift gate. The feasibility of physical realization of ququadrit quantum compu-
tation with cooled-trapped 138Ba+ ions is detailed analyzed and described, and the
theoretical detection method of logical states is given. Higher entanglement between
ququadrits than qutrits or qubits and more security of ququadrit quantum cryptography
than qutrit’s or qutrit’s will lead to more extensive applications ququadrits in quantum
information fields. In particular, it is pointed out that this scheme should be the highest
dimensional quantum computation in cooled-trapped ions, the entanglement between
ququadrits should be the highest dimensional entanglement in it, and the ququadrit
quantum cryptography should be the most secure cryptography protocol in it.
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1. INTRODUCTION

The use of cooled-trapped ions for qubit quantum computation was proposed
first by Cirac and Zoller (1995). The quantum information is encoded into the long-
lived states of the ions and the controlled-NOT gate operation between qubits is
accomplished with laser excitation involving the electronic internal states of indi-
vidually addressed ions and the common quantized vibrational modes of the ion
string in the trap. Laser cooled-trapped ions are ideally suited for the investigation
and implementation of quantum information processing (Šašura and Bužekaura,
2002) due to localization of a particle less than a few tens of nanometers (Keller
et al., 2001) control of the motional state down to the zero point of the trapping
potential (Meekhof et al., 1996), a high degree of isolation from environment and
thus a very long available time for the manipulation of their quantum state, and
the ability to measure the quantum state with high precision by electron shelving
technique (Dehmelt, 1975; Monroe et al., 1996). The entanglement in high di-
mensions is utilized for the realization of new types of quantum communication
complexity protocols (Brukner et al., 2002) and provides more security in quantum
communication applications (Bechmann-Pasquinucci and Peres, 2000; Bruss and
Macchiavello, 2002). The experimental generation of entangled qutrits using two-
photon states from the parametric down-conversion process and the experimental
realization of entanglement concentration of entangled qutrits of orbital angular
momentum entangled photons (Vaziri et al., 2002, 2003) are demonstrated and
make the great progress in the use of entanglement in higher dimensions. Recently,
the physical implementation of qutrit computer with the trapped ions proposed in
Ref. (Klimov et al., 2003) predicts that the physical system of trapped ions can be
of extensive applications in the of higher-entanglement quantum communication.

In this paper, the physical implementation of ququadrit quantum computation
with laser-cooled-trapped 138Ba+ ions in a Paul trap is studied. The ququadrits are
defined according to electronic fine-structure levels of trapped 138Ba+, composed
of the ground level and three metastable levels of it, these levels spanned into
a four-dimensional Hilbert space. The accomplishment of quantum gates nec-
essary for a ququadrit quantum computation, including a single ququadrit gate
and a conditional quantum gate between two ququdrits, which is called XOR(4),
corresponding to the controlled-NOT gate in qubit systems, are performed. Fur-
thermore, a scheme for realization of a quantum Fourier transform for n ququadrits
is obtained. In particular, the feasible detection method of the quantum states of
ququadrit in the computational basis is proposed in terms of the application of
polarization-sensitive laser-induced fluorescence technique (Neuhaustatt et al.,
1980; Raab et al., 1998). Higher entanglement between ququadrits than qutrits
or qubits and more security of ququadrit quantum cryptography than qutrit’s or
qutrit’s will lead to more extensive applications ququadrits in quantum information
fields. it is pointed out that this scheme should be the highest dimensional quantum
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computation in cooled-trapped ions, the entanglement between ququadrits should
be the highest dimensional entanglement in it, and the ququadrit quantum cryp-
tography should be the most secure cryptography protocol in it.

2. THE PHYSICAL SYSTEM AND DETECTION
METHOD OF QUANTUM STATES

In this section, the physical basis of the realization of a ququadrit quan-
tum computation, including the physical system of cooled-trapped 138Ba+ in
a Paul trap and the measurement scheme on identifying of the logical states
in a ququdrit are considered. A sequence of cooled-trapped 138Ba+ ions is ob-
tained by the methods and techniques of Ref. (Chu and Wieman, 1989; Nagerl
et al., 1999; Resis et al., 1996; Schbert et al., 1995) that have been verified by
many well known experiments. Throughout this paper, the logical states or the
computational basis of a single ququadrit is represented as {|0〉, |1〉, |2〉}, where
|0〉 ≡ 62S1/2(m = −1/2), |1〉 ≡ 52D3/2(m = −1/2), |2〉 ≡ 52D5/2(m = −1/2),
and |3〉 ≡ 52D3/2(m = 1/2). |0〉 is the ground state while |1〉, |2〉, |3〉 are the
metastable states of trapped 138Ba+ ion. The other states in this physical
system are defined as |4〉 ≡ 62P1/2(m = 1/2), |5〉 ≡ 62P3/2(m = −3/2), |6〉 ≡
62P3/2(m = −1/2), |7〉 ≡ 62P1/2(m = −1/2), and |0′〉 ≡ 52D3/2(m = 1/2), re-
spectively, where |4〉, |5〉, |6〉, and |7〉 are dipole transition excitation states while
|0′〉 is the metastable state. The main fine-structure levels of 138Ba+ are depicted in
Fig. 1 while the corresponding logical states and other related states in a ququadrit
are shown as Fig. 2. Then three Raman transition configurations, existing inde-
pendently among logical states |0〉, |1〉, and |4〉; |0〉, |2〉, and |5〉; and |0〉, |3〉,
and |6〉, are driven by (σ+, σ+), (σ−, σ−), and (π, σ−) pair-polarized classical

Fig. 1. Raman configurations for defining the logical states of a ququadrit
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Fig. 2. Electronic fine level structure of trapped ion. Quantum information
of ququadrits is stored in levels |0〉, |1〉, |2〉, and |3〉. Transitions involving
effective interactions between levels |0〉 → |1〉, |0〉 → |2〉, and |0〉 → |3〉
are driven by classical fields with different polarizations (σ+, σ+), (π, σ+)
and (σ−, σ−), respectively.

light fields or electromagnetic fields, respectively. Naturally, if only three Raman
transition configurations are used, this resulting in the presence of phases among
them, an additional Raman configuration consisting of |0〉, |0′〉, and |7〉 is required
for achieving the controlled quantum gate operation of eliminating the phases.
This is an ancillary single-ion operation. Diode lasers (Appasamy et al., 1995;
Brewer et al., 1992) at 493 and 585 nm introduced by C. Raab et al. or dye
lasers (DiVincenzo, 2000) at 650, 614, and 445 nm used in the first single-ion
experiments with barium ion by W. Neuhauser et al., are available for reach-
ing the interactions mentioned above. Assume that the magnetic fields used for
the Zeeman splitting are approximately 10 G, the related energy differences be-
tween two neighboring Zeeman sublevels are E1 = 0.14| �B|, E2 = 2

3 × 0.14| �B|,
E3 = 4

5 × 0.14| �B|, E5 = 6
5 × 0.14| �B|, for these levels 2S1/2, 2P1/2, 2D3/2, 2D5/2,

respectively, in which the unit is MHz/G. According to these values, it is clear
that the typical energy difference is of few MHz. The trap oscillation frequency
suitable for trapping 138Ba+ ions and the transition frequency between the levels
S ⇔ P and D ⇔ P reported are of the order of tens of MHz and hundreds of
MHz in Klimov et al. (2003) and Raab et al. (1998), respectively.

In addition, according to the essential criteria (Xu et al., 1996), it is im-
portant that the readout of the logical states in computational basis for a univer-
sal quantum computation is identified by some effective detection methods. In
other words, it is necessary for us to provide a measurement scheme to discrim-
inate |0〉, |1〉, |2〉, and |3〉. In our case, the transitions: |0〉 → |1〉, |0〉 → |2〉, and
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|0〉 → |3〉, are electrically dipole forbidden, which are addressed with Raman tran-
sitions in terms of the independent channels related orthogonal polarizations and
driven by classical fields, whose channels are (σ+, σ+), (σ−, σ−), and (π, σ−),
respectively. Our measurement scheme is based on polarization-sensitive laser-
induced fluorescence techniques (Oberst, 1999; Xu and Cooke, 1993), which
is the development of the electron shelving technique in Dehmelt (1975). When
dipole resonant interactions from |1〉 → |4〉, |2〉 → |5〉, and |3〉 → |6〉 are sequen-
tially excited with σ+-, σ−-, and π -polarized lasers near 650, 614, and 614 nm
(Appasamy et al., 1995; Brewer et al., 1992; DiVincenzo, 2000), respectively,
the polarized-fluorescence will be sequentially monitored. If the polarizations of
emitting fluorescence are sequentially either σ+ near 493 nm, or σ− near 455 nm,
or π near 455 nm, the logical states are |1〉, |2〉, and |3〉, respectively; Otherwise,
that is, non-fluorescence indicates that the logical state is the |0〉. The detailed and
specific detection procedure is described as follows. When every single compu-
tation run is over, the Raman transition of the ancillary level system consisting
of |0〉, |0′〉, and |7〉 first is driven by (π , σ+)-polarized Raman channel lasers for
some time and then is switched in order to ensure no populations in the ground.
Then the transition|1〉 → |4〉 is continuously driven by σ+-polarized laser, the
Raman transition |0〉 → |1〉 is continuously driven by (σ+, σ+) polarized channel
lasers as a re-pumping lasers, and the short-lived |4〉 will be excited and then
scatter photons. Although the efficiency for detecting the photon from one decay
of |4〉 is low, however, one can keep re-pumping the system and scatter millions
of photons, eventually detecting a few of them in the case that the state is |1〉.
Otherwise, turning off the manipulation of the system of |0〉, |1〉, and |4〉, the
transition |2〉 → |5〉 is sequentially driven by σ+-polarized laser, the Raman tran-
sition |0〉 → |2〉 is continuously driven by (π , σ−)-polarized channel lasers as
re-pumping lasers, and the short-lived |5〉 will be excited and scatter photons. If
fluorescence occurs, the state is |2〉. Or, switching off the manipulation of the
system of |0〉, |2〉, and |5〉, the transition |3〉 → |6〉 is sequentially driven by σ−-
polarized laser, the Raman transition |0〉 → |3〉 is driven by (σ−,σ−)-polarized
channel lasers as re-pumping lasers, and the short-lived |6〉 will be excited and
scatter photons. If fluorescence is detected, the state is |3〉. If no fluorescence will
occur, the state is |0〉. In every cycle experiment end the answer will be either |1〉
firstly when the σ+-photons are detected or |2〉 secondly when the π -photons are
detected or |3〉 thirdly when the σ−-photons are detected or |0〉 finally when no
photons are detected, thus distinguishing these logical states with 100% detection
efficiency. Actually, our detection scheme is composed of sequential three ‘like-
electronics shelving’ method processes in Dehmelt (1975) with introduction of
distinctions of polarization-sensitive lasers. Therefore, the readout of the quantum
states is theoretically feasible and the measurement scheme on a ququadrit based
on 138Ba+ ion is achieved. It is worthwhile pointed out that according to analyzing
the level structure of 138Ba+ and consideration of only having three orthogonal
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polarization lasers σ+, π , and σ−, it is possible that our computation scheme
should be the highest dimensional in scope of trapped-ions. Due to the limitation,
it is very difficult for us to conduct more than four-dimensional computation in this
scope.

From all of these physical parameters and the measurement scheme men-
tioned above, it is concluded that the realization of a ququadrit computation using
cooled-trapped 138Ba+ ions should be feasible in current or planed technology.

3. SINGLE QUQUADRIT GATE

According to Fig. 2, the transitions |0〉 → |1〉, |0〉 → |2〉, and |0〉 → |3〉,
being dipole forbidden, are implemented with Raman transitions of independent
channels related to orthogonal polarizations, which are driven be classical fields
�04 and �14, �05 and �15, �06 and �16, respectively. The ion level populations
are adjusted and controlled by selecting the desired coherent operation in this
system. The Hamiltonian representing this system, in the rotation wave and dipole
approximation, is expressed as

H =
6∑

j=0

hω|j 〉〈j | + h

{
e−iν2t

6∑
i=4

�0i |i〉〈0| + e−iν1t

6∑
i=1

�i+3,i |i + 3〉〈i|+H.C

}
,

(1)
In the case of single-ququadrit rotations, only the carrier transition in the

ion is considered, so that there is no explicit influence included on the center-
of-mass motion of the ion. Thus, the spatial dependences of Raman fields have
been included as phase factors. Through adjusting the relationships among the
frequencies in order to the detuning being much larger than the Raman frequencies,
adiabtically eliminating rapidly decaying upper leves |4〉, |5〉, |6〉, thus we obtain
an effective Hamiltonian:

H

h
=−

3∑
i=1

|�i+3,i |2
�

|i〉〈i|−
6∑

i=4

|�i,0|2
�

|0〉〈0|−
{

6∑
i=4

�i,i−3�
∗
i,0 |0〉〈i − 3|+H.C

}
,

(2)

If the additional condition: |�4,1|2/� = |�5,2|2/� = |�6,3|2/� = (|�4,0|2 +
|�5,0|2 + |�6,0|2)/� is satisfied, after some complex calculations, the evolution
operator in the four-dimensional space {|3〉, |2〉, |1〉, |0〉} is expressed as

U (ϕ) =




1 + |g|2c(ϕ) gg′∗c(ϕ) gg′′∗c(ϕ) −ig sin ϕ

g∗g′c(ϕ) 1 + |g′|2c(ϕ) g′g′′∗c(ϕ) −ig′ sin ϕ

g∗g′′c(ϕ) g′∗g′′c(ϕ) 1 + |g′′|2c(ϕ) −ig′′ sin ϕ

−ig∗c(ϕ) −ig′∗c(ϕ) −ig′′∗c(ϕ) cos ϕ


, (3)
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where ϕ = �t, c(ϕ) = cos ϕ−1, and �2 = |k′′|2 + |k′|2 + |k|2. The notion g =
k/�, g′ = k′/�, and g′′ = k′′/�, where k = �6,0�

∗
6,3/�, k′ = �5,0�

∗
5,2/�, and

k′′ = �4,0�
∗
4,1, is introduced. We can implement all the required coherent oper-

ators between any two logical states by the use of this evolution operator. For
example, we can activate the transition |2〉 → |3〉, assuming ϕ = π , k′′ = 0 in the
Eq. (3), then

U1 =




cos α1 −eiβ1 sin α1 0 0

−e−iβ1 sin α1 − cos α1 0 0

0 0 1 0

0 0 0 −1


 , (4)

with defining cos α1 = (|k′|2 − |k|2)/(|k′|2 + |k|2) and −e−iβ1 = kk′∗/|kk′∗|.
Other transitions are achieved by adjusting the k, k′, k′′ constants and ϕ. The transi-
tions |1〉 → |3〉 with ϕ = π, k′ = 0, |1〉 → |2〉 with ϕ = π, k = 0, |0〉 → |1〉 with
k = 0, k′ = 0, |0〉 → |2〉with k = 0, k′′ = 0, and |0〉 → |3〉 with k′′ = 0, k′ = 0,
are addressed, respectively. For the sake of simplicity, Their detail expressions
are omitted, represented by U2, U3, U4, U5, U6, respectively. Therefore, six op-
erations involving 12 independent parameters are given. In order to generate any
SU(4) operator (Vilenkin and Klimyk, 1991), the other three parameters required
are obtained by the dispersive evolution UD connecting interactions of fields with
|0〉 → |1〉, |0〉 → |2〉, and |0〉 → |3〉 transitions in the far off-resonance limit. The
unitary discrete quantum Fourier transform for a single ququadrit is defined by

F |j 〉 ≡ |j̄〉 = 1
2

3∑
l=0

ei2πlj/4|l〉, (5)

In principle, the Fourier transform is transferred into the form

F = iUDU6U5U4U3U2U1, (6)

where each of these operations is obtained from the above process if we give each
parameters specific values. In fact, any arbitrary one-ququadrit rotation gate is
expressed in this way by Eq. (3).

4. CONDITIONAL GATE BETWEEN TWO QUQUADRITS

The conditional gates between two ququadrits are defined as

XOR(4)|i〉m|j 〉n = |i〉m|i ⊕ j 〉n, (7)

where i ⊕ j denotes the addition, modulo 4, m and n denote ququadrit-m and -n,
respectively. It will be shown that the this gate is expressed as XOR(4) = F−1

n PmnFn

with Fn being the discrete quantum Fourier transform for one ququadrit and
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the Pmn a conditional phase-shift gate between ququdrit-m and ququadrit-n. Fn

is originated from the coherent manipulation of populations a four-dimensional
Hilbert space spanned by the four logical states in a ququadrit being the ground
state and the three metastable state of the 138Ba+ ion while Pmn is produced by
the first sideband resonant transitions and the intervention of an ancillary quantum
channel between ququadrits.

A fundamental requirement for which we perform a conditional phase gate
between two ququadrits is that a mechanism is provided to distinguish independent
quantum paths and to satisfy the conditional change in the target ququadrit which
depends on the control ququadrit. The definition of the XOR(4) gate is that the target
changes only when the control ququadrit is in state |1〉, |2〉, and |3〉, otherwise,
the state of the target will be unchanged. Therefore, only a protocol is required
to perform in which independent quantum channels through |1〉, |2〉, and |3〉 of
the control ququadrit are considered. Such channels can be established with the
comprising of the collective center-of-mass (CM) motion of 138Ba ions in the Paul
trap.

Assuming that �0,6 = �3,6, �0,5 = �2,5 and �0,4, �1,4 �= 0, or �0,6 = �3,6 =
0, �1,4 = �0,4 = 0, and �0,5, �2,5 �= 0, and �0,5 = �2,5 = 0, or �0,6 = �3,6 = 0,
�1,4 = �0,4 = 0, and �0,6 = �3,6 �= 0, in three cases, after eliminating the upper
excited level and adjusting to the first red sideband transition, The Hamiltonian
that describes the ion center of mass coupled to the electronic transition |0〉 → |q〉
is:

Hn,q = �qη

2

[|q〉n〈0|ae−iδt−iφ + a+|0〉n〈q|eiδt+iφ
]
, (8)

Here q = 1, 2, 3, represents polarizations. a+ and a− are the creation and an-
nihilation operators of the CM phonons, respectively, �q denotes the effec-

tive Rabi frequency, φ is the laser relative phase, and η =
√

hk2
θ /(2Mνθ ) is

the Lamb-Dicke parameter. We can coherently manipulate the center-of-mass
motion coupled to electronic transitions, through the selection of the effec-
tive interaction time and laser polarizations. Then, the implementation of the
coherent interaction between ququadrits and the collective center-of-mass mo-
tion is allowed in terms of this Hamiltonian, whose evolution operation is
shown as

lU l,q
m (φ)|0〉m〈0| = |0〉m〈0|,

U l,q
m (φ)|0〉m〈1| = cos(�qηt/2)|0〉m〈1| − ie−iφ sin(�qηt/2)|q〉m〈0|,

U l,q
m (φ)|q〉m〈0| = cos(�qηt/2)|q〉m〈0| − ie−iφ sin(�qηt/2)|0〉m〈1|, (9)

where we assume �qηt/2 = lπ/2 for simplicity. It is clear that the choice of
the quantum channels for transferring the information to the center-of-mass is



Implementation of a Ququadrit Quantum Computation with Cooled-Trapped Ions 1185

allowed by the use of these coherent operations. Thus, a phase change in ququadrit
depending on the energy of the center-of-mass state is necessarily introduced.
This phase change is accomplished through the dispersive regime of the first red
sideband in Eq. (9), that is,

Dq
m(ϕ) = eiϕaa+ |q〉m〈q| + e−iϕaa+ |0〉m〈0|, (10)

where ϕ = (�qη)2/4δ, allowing for an intensity-dependent phase shift of the
fine-structure levels.

From Eq. (9), the conditional phase shift needed to realize the
XOR(4), in the computational basis {|0〉m|0〉n, |0〉m|1〉n, . . . , |3〉m|3〉n} is
expressed as:

Pm,n = P (3)
mnP

(2)
mnP

(1)
mn = dig(1, 1, 1, 1, 1, i,−1,−i, 1,−1, 1,−1, 1,−i,−1, i),

(11)
where

P (1)
mn(φ1, φ2, φ3) = R00′ (π )U 1,1

m (3π/2)D′3
n (ξ3)D3

n(φ3)D′2
n (ξ2) D2

n(φ2)D′1
n (ξ1)

×D1
n(φ1)U 1,1

m (π/2)R00′ (π ),

P (2)
mn(φ2, φ3, φ1) = R00′ (π )U 1,2

m (3π/2)D′3
n (ξ1)D3

n(φ1)D′2
n (ξ3)D2

n(φ3)D′1
n (ξ2)

×D1
n(φ2)U 1,2

m (π/2)R00′ (π ),

P (3)
mn(φ3, φ2, φ1) = R00′ (π )U 1,3

m (3π/2)D′3
n (ξ2)D3

n(φ2)D′2
n (ξ1)D2

n(φ1)D′1
n (ξ3)

×D1
n(φ3)U 1,3

m (π/2)R00′ (π ), (12)

with ξi = 2π − φi . The operation R00′ (π ) is a rotation only impinging on
the ion when it is in the |0〉 level, which sends it to |0′〉 level pre-
venting from the generation of any phase shift in this state. The expres-
sions of the dispersive operations influencing on transitions |0〉 → |1〉, |0〉 →
|2〉, |0〉 → |3〉 are D1

n(φ1),D′1
n (ϕ1),D2

n(φ2),D′2
n (ϕ2),D3

n(φ3),D′3
n (ϕ3) that are or-

thogonal matrices. Their detail formulae are omitted for simplicity (see Oberst,
1999).

Thus, the particular phase-shift gate in Eq. (11) can be reached by
P (1)

mn(π/2, π, 3π/2), P (2)
mn(π, 2π, 3π ), and P (3)

mn(π, 0, π ). Finally, the combina-
tion of the effective conditional change of the target ququadrit state with
the discrete quantum Fourier transform constructs the XOR(4) gate which,
in the computational basis {|0〉m|0〉n, |0〉m|1〉n, · · · , |3〉m|3〉n}, is specifically
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expressed as

XOR(4) = F−1
n P (3)

mnP
(2)
mnP

(1)
mnFn =




1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0




,

(13)

5. FOURIER TRANSFORM FOR MANY-QUQUADRITS

In this section, as the first application, the general protocol for the quan-
tum Fourier transform for a quantum system of n ququadrits is proposed. The
Fourier transform in four-dimensional Hilbert space (Nielsen and Chuang, 2000)
is expressed as:

|j̄ 〉 = 1

4n/2

4n−1∑
k=0

ei2πj (k/4n)|k〉, (14)

where 0 ≤ j ≤ 4n − 1. An equivalent product form is shown as

|j̄〉 = 1

4n/2

[
3∑

k1=0

e(i2πjk1Ojn)|k〉
] [

3∑
k2=0

e(i2πjk2Ojn−1jn)|k2〉
]

· · ·

×

 3∑

kn=0

e(i2πjknOj1j2...jn)|kn〉

 , (15)
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If the summation for each factor is expended, for instance, the last term is written
as follows:

3∑
kn=0

ei2πjknOj1j2...jn |kn〉 = 1

2

[|0〉 + ei2πOj1j2...jn |1〉 + ei4πOj1j2...jn |2〉

+ ei6πOj1j2...jn |3〉] = 1

2

[|0〉 + ei2π(j1/4+j2/42+···+jn/4n)|1〉

+ ei4π(j1/4+···+jn/4n)|2〉 + ei6π(j1/4+···+jn/4n)|3〉], (16)

This state can be created by the starting of the application of a Fourier transform
on the first ququadrit

F
(4)
1 |j1〉|j2〉 . . . |jn〉 = 1

2

[|0〉 + ei2πj1/4|1〉

+ ei4πj1/4|2〉 + ei6πj1/4|3〉]|j2〉|j3〉 . . . |jn〉, (17)

and then the application of conditional phase transformations on this ququadrit
state, which we turn to the initial state of remaining |j2〉, |j3〉, . . . , |jn〉 ququadrit
states,

Rn1 . . . R31R21F
(4)
1 |j1〉|j2〉 . . . |jn〉 = 1

2

[|0〉 + ei2π(j1/4+···+jn/4n)|1〉

+ ei4π(j1/4+···+jn/4n)|2〉
+ ei6π(j1/4+···+jn/4n)|3〉]|j2〉|j3〉 . . . |jn〉,

(18)

The conditional phase is as follows

R21 = P
(3)
21

(
6π

42
,

12π

42
,

18π

42

)
P

(2)
21

(
4π

42
,

8π

42
,

12π

42

)
P

(1)
21

(
2π

42
,

4π

42
,

6π

42

)
,

R31 = P
(3)
31

(
6π

42
,

12π

42
,

18π

42

)
P

(2)
31

(
4π

42
,

8π

42
,

12π

42

)
P

(1)
31

(
2π

42
,

4π

42
,

6π

42

)
,

· · ·
Rk1 = P

(3)
k1 P

(2)
k1 P

(1)
k1 , P

(jk )
k1 = P

(jk )
k1

(
2jkπ

4jk
,

4jkπ

4jk
,

6jkπ

4jk

)
,

(19)
In the same methods, the state

3∑
kn=0

ei2πjknOj1j2...jn |kn〉 = 1

2

[|0〉 + ei2π(j1/4+j2/42+···+jn/4n)|1〉

+ ei4π(j1/4+···+jn/4n)|2〉 + ei6π(j1/4+···+jn/4n)|3〉], (20)
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is produced by the application of a Fourier transform on the ququadrit |j2〉 and
then conditional phase operation on this ququadrit state are performed, which we
turn to the state of the remaining |j3〉, . . . , |jn〉 ququadrit states. Therefore, the
n-ququadrit quantum Fourier transformation is reached at the end.

6. SOME POSSIBLE APPLICATIONS OF QUQUADRITS

Some possible applications of ququadrats in information field, such as the
security of quantum key distribution, the effective resources, and the separable and
the nonseparable conditions of entanglement among ququadrits are shown in this
section. According to Bruss and Macchiavello (2002) and Bechmann-Pasquinucci
and Peres (2000), theoretically, the use of higher-dimensional quantum systems
instead of lower-dimensional systems can be improve the security of quantum key
distribution and increase the ability against the individual attacks, the coherent
attacks, and the symmetric attacks. Here we provide a specific real physical system,
ququadrat, consisting of trapped 138Ba+ ions. Therefore, it is predicted that the
corresponding experimental demonstration on the security of key distribution with
ququadrit systems should be implemented according to our scheme in the context
of trapped ions. The security can improve approximately 20% comparable to that
of qutrits or qubits. Furthermore, the implementation of quantum computation
complexity protocol of two-entangled-ququdrats is more efficient than that of
qutrits or qubits, derived from Brukner et al. (2002). In the other words, there
exist more available resources in a ququadrit than in a qutrit or qubit, which, in a
d-dimensional quantum system, are defined as R = lnd, meaning R increases along
with d. According to Carlton and Miburn (2000) and Nicolas et al. (2002), the
fact that the two-qutrit mixture is separable if and only if the possibility ε3 for the
maximally entanglement does not exceed 1/4, indicates that maximally entangled
states of qutrits are more entangled than the maximally entangled states of two
qubits, because ε2 ≤ 1/3. In fact, in the similar situation, the maximally entangled
states between ququadrits are more entangled than those between qutrits or qubits,
because ε4 ≤ 1/5. At the same time, the separable condition ε4 ≤ 1/(1 + 42n−1)
can be obtained by the extension of the methods in Carlton and Miburn (2000)
and Nicolas et al. (2002), when n-ququdrits are a mixture of a maximally mixed
state and maximally entangled state ρε4 = (1 − ε4)Md2 + ε4ρ1 where M4n = 1 ⊗
1/4 ⊗ · · · ⊗ 1/4n the maximally mixed for n ququdrits, and ρ1 is any n-ququadrit
density matrix. It is clear that ε4 max < ε3 max < 32 max, where ε3 ≤ 1/(1 + 32n−1),
ε2 ≤ 1/(1 + 22n−1). Whereas, the non-separable condition ε41/(1 + 4n+2) can be
obtained when the joint density operators ρε4 = (1 − ε4)Md2 + ε4|φ〉〈φ| for two
ququadrits, where Md2 = 1/d2 is the maximally mixed state in d2 = 4n dimension
and |φ〉 = (1/

√
d)

∑d
i=1 |i〉〈i| is a maximally entangled state for two particles, is

considered. It is apparent that ε4 min < ε3 min < ε2 min, in which ε3 ≥ 1/(1 + 3n/2)
and ε2 ≥ 1/(1 + 2n/2). The combination of the both mentioned above results
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naturely in a conclusion that the entanglement from ququadrit is more stronger
than those from qutrits or qubits. The higher entanglement between ququadrits
than qutrits or qubits and more security of ququadrit quantum cryptography than
qutrit’s or qutrit’s will lead to more extensive applications ququadrits in quantum
information fields. Owing to the highest-dimension used for quantum computation
in the cooled-trapped ions being four, the entanglement between ququadrits is the
most entangled and the security of ququadrit quantum cryptography is the most
secure in the scope of ions.

7. CONCLUDING REMARKS

In summary, a scheme for the physical implementation of a universal
ququadrit quantum computation, whose logical states are the electronic fine-
structure levels of cooled-trapped 138Ba+ ions, which is composed of the single
ququadrit gate included also in a discrete quantum Fourier transform, the condi-
tional gate (i.e., XOR(4)) between two ququadrits, and the quantum logical state
detection methods in the four-dimensional computational basis, has been proposed.
The Fourier transform for many-ququadrits is achieved by means of a sequence of
conditional phase transformational operations. Although our scheme is the direct
extension of that of Klimov et al. (2003) from the ways, the extended process is not
trial as the same as Klimov et al. (2003) is the direct extension of that of Cirac and
Zoller (1995). In our paper, the polarized-sensitive stimulated Raman transition
techniques (Appasamy et al., 1995; Brewer et al., 1992) and the polarization-
laser-induced resonance fluorescence detection techniques (Oberst, 1999; Xu and
Cooke, 1993), making in principle our scheme feasible, are utilized for the coher-
ent manipulation of the populations of the logical states of each ququadrit and the
discrimination and identifying of the logical states at the end of each computa-
tional run, respectively. It is more important that the detailed and specific detection
process of them has been given in Section 2. It has been demonstrated that our
scheme is the highest dimensional quantum computation in the physical system of
cooled-trapped ions duo to the combining consideration of the level structure of
138Ba+ and three polarization states of lasers so far. It has been shown through cal-
culations that the ququadrit-quantum entanglement with cooled-trapped 138Ba+

should be more entangled than the qubit- and qutrit-entanglement and be the
most dimensional entanglement in cooled-trapped ions, and ququadrit-quantum
secure cryptograph should be more security than the qubit- and qutrit-cryptograph
protocols, and be the most secure quantum cryptography in cooled-trapped ions
(Bechmann-Pasquinucci and Peres, 2000; Bruss and Macchiavello, 2002; Carlton
and Miburn, 2000; Nicolas et al., 2002). They can be generated by using the basic
methods here and will be found more extensive applications in higher-dimensional
quantum communication fields. Indeed, our scheme is easily extended to the sit-
uation of cooled-trapped 43Ca+ ions (Schmidt-Kaler et al., 2003; Steane, 1997).
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Some further studies on the applications of the ququadrit quantum computation
are beyond this paper, which will be given elsewhere.
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